
Towards A Framework for Handling Musical Expression

Daniel V. Oppenheim, James Wright
Computer Music Center, IBM T. J. Watson Research Center

Route 134, Yorktown Heights, NY 10598
music@watson.ibm.com, jwright@watson.ibm.com

Abstract: It is hard to imbue computer music with expressive gestures. We are
proposing a framework specifically to support that need. This framework is based
on three components: a content representation called Nuance, a framework for
rendering expressive elements called LeNNY, and various user interfaces for
specifying and manipulating expressive gestures.

Keywords: music, expression, composition, representation, interactive

1. The Score and Musical Expression
Our musical experience of instrumental music is
stimulated by an interplay of at least two
factors: the score as notated by the composer,
and its expressive interpretation during a per-
formance. It is well understood that scores are
highly amenable to formal musical analysis.
Performance practice, on the other hand, cannot
be reduced into a formal framework and is
traditionally passed orally from teacher to
student. Composers of instrumental music deal
with the formal aspects of musical composition
but always while considering how they will
actually sound when rendered by a performer.

In computer music the composer often pro-
duces a complete work that is rendered onto
tape and will never be subject to further inter-
pretation. In such cases the composer must not
only compose his work but also perform it. A
system for composing such music must include
facilities for what Oppenheim termed composed
expression (Oppenheim 92). Most existing
systems for computer music rely heavily on the
score model. This model does not readily lend
itself to the specification of musical expression
(Desain & Honing 1991, Honing 1992). This
limitation does not stem from the score model
itself, but rather from the composer’s inability
to figure out the ‘correct’ parameters needed to
produce a desired expressive gesture.

Our work deals specifically with composed ex-
pression: it is a framework for specifying and
editing musical expression. This is work in
progress, rather than an all inclusive solution to
the problem of musical expression. We present
some initial design ideas, and expect many
changes will occur as the work progresses and
our understanding improves.

2. Our Approach
We approach the problem of musical expression
on three different levels:
1. The Nuance content representation, with

specific extensions for musical expression.
2. The LeNNY framework is built on top of

Nuance specifically for rendering Nuance
scores onto various output devices (i.e.
synthesizers, signal processors). The output
from LeNNY contains expressive details,
much like a live performance.

3. Several kinds of user interfaces for speci-
fying, visualizing, and editing musical
expression. Different editors can access
multiple levels of a compositional structure.

Our approach differs from traditional solutions
in the following ways:
1. We distinguish between Score Values,

Expressive Attributes, and Effective Values.
A Score Value is the traditional P-field
parameter (e.g. pitch = 440Hz). Expressive
Attributes modify Score Values (legato,
crescendo, brighter, etc.). The Effective Value is
the Score Value after it has been trans-
formed throughout the system to include all
the Expressive Attributes. The Effective
Value is analogous to the result of a live
performer playing a Score Value.

2. The modeling of expression is cumulative
and uses a hierarchical structure. Often, the
Expressive Attributes are not wholly
contained in individual notes, but may re-
side in a hierarchy of layers, each of which
can add its own interpretation or meaning.
For example, a Phrase can include Expres-
sive Attributes that will affect each of its
notes, and yet also be contained within a
Section that contains additional Expressive
Attributes that further modify the expres-

James Wright
Reprinted from ICMC 1996 Copyright © IBM Corporation 1996

James Wright

sive detail. In this case, playing the same
Phrase when disconnected from the Section
will produce different Effective Values than
when played as part of the Section.

3. Each kind of expressive attribute is inter-
preted using a Context that specifies how
that attribute may be evaluated, manipu-
lated and rendered. Contexts are also cu-
mulative and can be nested anywhere
within the compositional hierarchy.

4. The end musical result, i.e. the Effective
Values, is achieved through the interaction
of three separate entities: the Score Values,
Expressive Attributes, and Music Contexts.

3. The Nuance Music Representation
Nuance is a simple, open-ended representation
based on a few fundamental constructs, that
supports the evolution of families of dialects
specialized for different needs and domains. It
is being developed to support on-going work in
the creation, performance, manipulation and
analysis of music and other time-based media.

Some primary objectives of Nuance include:
• Extending the “note event” model to

include what happens inside a note,
between successive notes, and how these
are affected by the overall musical context.

• Explicit modeling of expressive attributes.
• The use of simple building blocks and

inspectable, role-based specifications to
promote clarity, generality and
extensibility.

Attributes, Bundles and Contexts are the three
major constructs of Nuance (fig. 1). A simple
example would use Attributes to represent
parameters like pitch or onset, Bundles to
represent musical structures from notes to
complete works, and Contexts to provide the
frames of reference within which these elements
are interpreted, manipulated and performed.

Bundle

Attribute

Context

Figure 1
An individual “note” may be modeled as a
single Bundle of Attributes, with each Attribute
capturing a given kind of musical detail (fig. 2).

An Attribute defines a functional role within a
content domain, such as pitch, onset or loud-
ness. An Attribute is represented using one or
more kinds of Domain Value. For example,

CentsPitch, MidiPitch, DiatonicPitch and Hertz-
Pitch are all potential Domain Values of a Pitch

Onset

Pitch

Loudness

Vibrato

Duration

Figure 2
attribute. Domain Values related to a common
attribute type are said to be compatible and
may be freely inter-converted. DomainValues
are somewhat like the MusicMagnitudes used
in DMIX (Oppenheim 1992, 1996) and SmOKe
(Pope 1996); a key difference is the use of
explicit Contexts in Nuance.

Attribute values can vary across the extent
(duration) of a single bundle, producing a time-
variant attribute contour. Attribute contours
support dynamic inflections such as envelopes
and cyclic modulations.

A Bundle is a container with temporal extent. It
may contain Attributes and/or other Bundles.
Bundles may be nested to construct higher-
order entities such as chords, motivic
fragments, phrases and sections (fig. 3).
Bundles may also be used to represent
expression contours, harmonic analyses, or
other kinds of performance, analytical or
compositional information. A given bundle can
be contained by multiple other bundles, so long
as the resulting bundle network is a directed
acyclic graph (DAG).

N

N

N

N

N

N

N

N

Chord
Bundle

Melody
Bundle

Note
Bundles

Phrase
Bundle

Figure 3
Bundles also provide a scoping mechanism. An
attribute associated with a bundle affects all of
its nested bundles.

Contexts define the environment within which
Attributes are evaluated and manipulated. A
given Context holds the metadata (semantic
information) and support mechanisms for a

James Wright
Reprinted from ICMC 1996 Copyright © IBM Corporation 1996

particular Attribute, and for the Domain Values
which embody that Attribute.

A Context includes:
• Role-based specifications defining the

runtime structure of related Domain
Values.

• Methods for value conversion between
compatible (role-related) Domain Values.

• Combining rules for evaluating nested
attributes and attribute contours.

• Lookup tables and other referential data
needed to support value conversion and
manipulation.

For example, the Pitch context might define one
or more scales (interval patterns), a Midi pitch
table, spellings of accidentals, Middle C tuning
and intonation table. Given this information,
conversions between MidiPitch, HertzPitch,
CentsPitch and DiatonicPitch are trivial.

Contexts may be nested as well, so that differ-
ent portions of a work can override or modify
global environmental information when
appropriate.

4. Expression Modeling In Nuance
Expressive qualities within a single note may be
modeled directly using a single attribute with
time-varying extent. This includes gestures
such as pitch envelopes and cyclic modulations.
Expressive contours involving a series of note
elements are modeled using compound attributes,
which result when a nested bundle and one or
more containing bundles have attributes of
compatible kinds. Each such attribute is then
considered to be an aspect of a single compound
attribute.

The base (innermost) aspect represents the
scored value of the attribute, while the other
aspects represent expressive contours or de-
viations. The effective value of the compound
attribute is determined by evaluating all com-
patible in-scope attributes, using combining
rules in the relevant Context.

For example, a work might use a global tempo
map, a “groove template” defining a specific
rhythmic micro-structure, and three distinct
section–, phrase– and bar– level contours (fig.
4). Certain attributes model the flow of time at
a given structural level, while others model ex-
pressive deviations from that flow. Taken
together, they form six aspects of a single com-
pound Onset attribute. The effective onset for
each note is determined by evaluating the four
higher-level attributes along with the nominal
(‘scored’) onset of that particular note and

aligning the result with a location in the
rhythmic microstructure grid.

N

Composition
Groove Template
Tempo Map

Section

Phrase

Bar

Onset

Onset

Onset

Onset

Figure 4

5. The LeNNY Rendering Architecture
The Nuance music representation provides the
basic building blocks for dealing with musical
expression. The LeNNY architecture is a
framework built above Nuance specifically to
utilize this potential. LeNNY renders Nuance
scores onto specific synthesis and DSP devices.

One may view a Nuance score as a
‘conventional’ score augmented with an addi-
tional structure is attached that specifies ex-
pressive details. This second structure includes
the Expressive Modifications and references to
Context objects, both of which are scattered
throughout the compositional hierarchy.

A Performer is a LeNNY object that parses the
Nuance structure, evaluates and reconciles all
the Expressive Modifications and relevant
Contexts, and finally produces the actual
synthesis parameters (fig. 5). Similar ideas can
be found in (Dyer 1991, Anderson 1993). We in-
tend to use one performer for each synthesis
instrument type, so that different performers
may interpret given Expressive Attributes in
different ways (a tuba performer may interpret
a legato attribute differently than a violin or
piccolo performer, and a piano performer will
ignore vibrato attributes).

A LeNNY Performer

Score

Expressive

Synthesis / Signal Processing control

Figure 5

James Wright
Reprinted from ICMC 1996 Copyright © IBM Corporation 1996

6. The User Interface
The user interface is a key element for allowing
a composer to actually obtain ‘musical’ results.
The user interface must provide access not only
to note events and their parameters, but also to
all of the expressive attributes and music
contexts that are spread throughout the
hierarchy of the composition. We expect that
many commonly used tools will have to be
adapted so that they can handle expression (e.g.
piano roll, note list and common music notation
editors). In addition we expect that new types
of editors will be needed (e.g. graphical editors
for direct manipulation of attribute contours.)

7. An Imaginary Expression Editor
Figure 6 is an imaginary example of one
possible user interface using a DMIX Structure-
View. This view presents a Bach composition
(bottom black rectangle) comprised of two inner
sections: opening and middle section (see black
rectangles in diagram center). The opening
section contains two parts: a melody and a bass
(light gray rectangle in top left corner); the
middle section contains 4 subsections, each with
melody and bass (top right).

The composer listens to the music and decides
to phrase the opening section. To so this, he or
she applies a performance-by-rule BlockClosure
[1, numbers refer to Figure 6]. However, the
need for further changes becomes clear after
hearing the result. A second layer of Expression
is added which combines with the first and
explicitly sets the onset times of several selected
events [2]. Next, the loudness in the opening and
middle sections is refined using a DMIX
Modifier [3], which is edited interactively to
obtain the desired result. It happens that the
change in loudness has had some unwanted
side effects, so the composer decides to add yet
another layer of Expression to ‘correct’ the
articulation [4]. This is done with a real-time
Expression Modifier: the composer adjusts the
articulation using a MIDI controller while
listening to the entire music playing. In [5] a
BlockClosure is applied. This algorithm may
take into account musical attributes in other
sections of the work (or anywhere in the DMIX
environment) to determine some desired
attributes of the inner section within the middle
section. And finally another Modifier is used to
determine the tempo [6] of the middle section.

tempo

tempo

BlockClosure

rule: #Phrase [62 32 64]

override: BeginTimes
Loudness

1

Articulation (stac <-> legato)

Realtime: ModulationWheel

2

3

4

5

6

Figure 6

8. References
Anderson, T. (1993) “E-SCAPE: An Extendible
Sonic Composition And Performance Environ-
ment.” Ph.D. thesis, University of York, UK.

Desain, P., & Honing, H. (1991) “Towards a
calculus for expressive timing in music.”
Computers in Music Research, 3, 43-120.

Dyer, L. (1991) “An Object-Oriented Real-time
Simulation of Music Performance Using
Interactive Control”, Ph.D. thesis, CCRMA,
Stanford University, Report STAN-M-78.

Honing, H. (1992). “Expresso, a strong and
small editor for expression”, Proceedings of the
ICMC, San Jose, CA.

Oppenheim D. (1992), “Compositional Tools for
adding Expression to Music in DMIX.”
Proceedings of the ICMC, San Jose, CA.

Oppenheim, D. (1996) “DMIX-A Multi Faceted
Environment for Composing and Performing
Computer Music.” Computers and
Mathematics with Applications, 32(1):117-135.

Pope, S. (1996) “Object-oriented music repre-
sentation.” Organised Sound, 1(1):55-68,
Cambridge University Press, UK.

James Wright
Reprinted from ICMC 1996 Copyright © IBM Corporation 1996

