
CyberBand: A “Hands-On” Music Composition Program
James Wright, Daniel V. Oppenheim, David Jameson

Don Pazel, Robert M. Fuhrer
{ jwright, music, dhj, pazel, rfuhrer, @watson.ibm.com }

Computer Music Center
T. J. Watson Research Center, IBM

P.O. Box 218, Yorktown Heights, NY 10598
www.research.ibm.com/music

Abstract

CyberBand provides a novel and powerful approach to composing music with computers. It is based on
the concept that many kinds of music can be constructed by assembling, modifying, and transforming
musical fragments through direct visual manipulation. We describe our approach to music
representation, the user interface, and choice of user metaphors, while emphasizing the elements that
enable non musicians to creatively compose music. We outline issues that influence our ongoing work in
determining both usability and look and feel. A working prototype of CyberBand will be demonstrated.

1. Introduction
Music is abstract and complex. Composing
instrumental music requires skills in various areas of
music theory such as harmony, counterpoint, musical
form, and orchestration. The user interface in systems
for computer assisted composition often adopts
metaphors that are based on music theory. Only a
skilled musician can understand these metaphors and
use the provided compositional tools effectively.
Furthermore, systems for composing music tend to
become large and complex, are hard to use, and have
a significant learning curve. (For a survey of systems
see Loy 1989; for examples of academic systems see
Mathews 1969, Schottstaedt 1984, Puckette
1988/1991, Ames 1990, Taube 1991 and Oppenheim
1996; for examples of commercial systems see Vision
1995, FreeStyle 1995, and Symbolic Composer
1995).

We would like to bring the joy of creating and
performing music to a wide range of users that may
have little or no formal musical training. Our premise
is that, while acquiring true musical competence
requires extensive formal training, the musical
experience itself, much like spoken language, is
learned through a natural process that is a part of our
social and cultural environment. We seek to
empower users to create music through software that
provides the basic musical competence needed to
realize their musical ideas, without unduly restricting
them. Users should be able to take charge of the
compositional process and assume responsibility for
making important compositional decisions.

Several commercial applications for the non
professional musician have appeared in recent years.

Our own KidRiffs is geared towards a young age
group (ages 5-10). It provides a creative musical
experience, but focuses primarily on performance
rather than composition. Microsoft has recently
released Music Producer. Here, composition is a
black box process whereby a user specifics a style
with some parameters, after which the application
generates the music. In this system the user is passive
and has little involvement in the creative process after
initial decisions are made.

2. CyberBand
CyberBand is centered around the concept that
musical riffs (thematic or idiomatic musical
fragments) can be combined and modified in ways
that enable the composition of music both by people
with musical training and skills, and by those with no
musical experience whatever. Composition on this
level focuses on arrangements, combinations and
interactions of relatively opaque elements. This
allows users to create and refine a broad range of
musical effects very quickly. When finer control is
desired, individual elements can be “unfolded” to
specify modifications precisely or perform detailed
content editing. Because of this multi-level approach,
CyberBand is surprisingly easy to learn and yields
results quickly. As users start working at deeper
levels, their options expand dramatically.

CyberBand has a base set of riffs that people can use
individually or in combination to create music.
(Users can also create, import and edit riffs when so
desired.) The application provides great flexibility in
manipulating the riffs to meet individual tastes and
musical contexts, while taking care of many support
functions needed for music composition and

James L Wright
Reprinted from ICMC 1997 Copyright © 1997 IBM Corporation

performance. These features can be used as
automatic facilitators for those without musical
experience, as well as sophisticated assistants by
those with musical training. This permits individuals
to focus on creating music, rather than being
concerned about, or inhibited by, the mechanics of
music production.

3. The Music Representation
The music representation developed for the
CyberBand prototype evolved from earlier work in
DMIX (Oppenheim 1989, 1996), research into
musical expression and the LeNNY framework
(Oppenheim 1992), experience with commercial
music sequencer software (Wright et al 1985) and
mix automation software (Wright, Rayna 1991,
1993), and Nuance, a time-based media
representation currently under development
(Oppenheim and Wright, 1996). The Nuance model
is significantly different from the model used in the
CyberBand Smalltalk prototype (described below),
and we are investigating the feasibility of using
Nuance for the C++ version now in progress.

3.1 The Event structure
Music is typically modeled as a collection of note
events. Each note has a set of attributes, such as
pitch, onset, amplitude, and duration. Composition is
carried out by specifying each note and its attributes.
Notes may be further grouped into hierarchical
structures that typically model instrumental parts or
musical sections. We refer to this as the Event
Structure.

Dealing with music on the level of individual notes
and their attributes requires considerable musical skill
and is also quite tedious. We therefore introduce in
CyberBand a higher-level concept that we call a
Music Block, or simply Block. A Block holds an
ordered set of notes or percussive events, often
corresponding to a musical phrase, motif or “riff”
(though Blocks may also contain entire sections or
compositions). The user creates music by selecting
Blocks from a palette and placing them on a canvas
we call a Score Sheet. An important feature of
Blocks is that they can be manipulated as a discrete
entity. For example, to set the duration of a Block,
the user can drag the Block’s bottom right corner to
the desired length.

3.2 The modification structure
The shaping of musical gestures and expressive
nuance is commonly achieved by setting new attribute
values in all notes included in the desired region.
Determining the new values usually requires a highly
skilled musician. This can be a lengthy process that

involves several iterations of trial and error, and can
be tedious even with the aid of a graphical interface.
Moreover, a successful change often requires
additional modification after some other musical
aspect has been adjusted. For example, if a user first
sets an amplitude curve and then changes articulation
from legato to staccato, the original amplitude curve
may have to be readjusted.

In CyberBand we take a very different approach to
the problem of editing and refining the music. Rather
than changing the values of individual events directly,
we introduce high level objects that model the desired
changes, called Modifiers. For example, to set the
amplitude curve of a Music Block, one would attach
to it a Volume Modifier with the desired curve.
Modifiers can be stacked together in any number and
in any order (changing the order may change the
effect). Attribute values for a given note are
calculated just before it is scheduled to play, taking
into account the effect of all associated Modifiers.

Our approach also differs from traditional computer
models for music representation. Rather than have a
single Event Structure of notes and attribute values,
we introduce a second structure of Modifiers that we
call the Modification Structure. Each Modifier is
linked to one or more Music Blocks (or individual
notes) in the Event structure. This double structure
maps well onto instrumental music where the Event
Structure models the music score and the
Modification Structure models the musical changes
that take place as the score is performed.

There are several distinct advantages to having a
Modification Structure. First, it is easy to describe a
desired musical result. For example, drawing an
amplitude curve and attaching that to a single Music
Block is easier than changing attribute values of many
individual notes. Moreover, this operation can easily
be carried out by non musicians. Second, it is easy to
change a result after it is applied. In the example
above one need only edit the amplitude curve in order
to modify the audible result. Finally, it is easy to
understand and manage interdependencies between
different Modifiers. A Modifier can be muted to
disable its effect, the order of modifications can be
adjusted, and modifiers that are not longer needed can
be removed.

4. The CyberBand User Interface
The main components of the CyberBand user
interface comprise a Score Sheet, Music Blocks,
Modifiers, and Catalogs. Catalogs are used to store
and access persistent content and are not further
described in this paper. We are experimenting with
several user metaphors based on these components,
namely the paint and word processor metaphors.

James L Wright
Reprinted from ICMC 1997 Copyright © 1997 IBM Corporation

4.1 The Score Sheet
The Score Sheet from our prototype version can be
seen in Figure 1. This is the main area in which
composition takes place. The horizontal axis
represents time. The vertical axis has no special
significance in the initial prototype, but we plan to
use it to distinguish regions with specialized roles.

Composition is done by selecting Blocks from a
Catalog, and placing them on the score sheet. Blocks
can be moved on the score sheet and their musical
attributes can be manipulated graphically.

For example, the duration of a block can be set by
dragging its right side, the volume can be set by
dragging its upper side, fade-in and fade-out can be
set by moving the top left and top right corners
respectively, and the block can be transposed by
dragging a special transposition handle. Other
attributes of the block, such as its instrument,
harmony, scale, and pan position, can be set by using
an inspector or other tool. Advanced users can also
gain access to the underlying musical content of a
given block, where they can edit individual notes
through a graphical “piano roll” editor or other editor.

The score sheet provides the user with a high level
visual representation of the music. As such, it is a
powerful tool that allows users to shape and structure
their work, providing both audio and visual feedback.
Unlike conventional scores, individual notes are not
displayed.

We believe that that non musicians will benefit from a
system that focuses on higher-level musical
characteristics. For them a primary emphasis on low-
level detail may obscure the underlying compositional
intent. Most users, most of the time, will benefit from
a system that focuses on higher-level musical
characteristics. We expect that even professional
musicians will find this representation extremely
useful and will not, for many activities, require a
more detailed representation (although an event-level
piano roll view is available). In fact, such a
visualization, with some refinements, has been
suggested for advanced users (Oppenheim 1987).

4.2 Modifiers
Modifiers are one of the most powerful concepts of
CyberBand, as they allow a user to control almost any
aspect of the music easily and precisely. Modifiers
are represented as independent visual objects that can
be directly manipulated to change their behavior, and
which are attached to the content elements they
modify. Modifiers can have a very subtle effect,
typically used to provide expressive nuance, or a very
dramatic effect, often used to completely change the
way a Riff is rendered. Modifiers also provide tools
that non musicians can use to create new source
materials via transformation.

There are many kinds of Modifiers. For example,
Rhythm Grids set the rhythms of the blocks to which
they are attached. Beat Emphasis Modifiers create

Figure. 1 An early prototype of the CyberBand Score Sheet.

James L Wright
Reprinted from ICMC 1997 Copyright © 1997 IBM Corporation

the feel of a live performer. Scale modifiers change
the scale in which music is playing. In addition there
are higher level Modifiers, such as interpolators
which define how several subordinate Modifiers
affect the music over time, and Morphing Modifiers
which blend musical characteristics from different
music Riffs (Oppenheim 1995).

Modifiers are particularly powerful in that they can
be applied to any hierarchical level within a
composition: individual blocks, a selection containing
several blocks, a complete musical part (such as all
the drum blocks in a composition), or the entire score
sheet. In each case, a given Modifier will affect all
the music within its scope. Because a Block can be
affected by a number of Modifiers associated with
different levels of the composition, the corresponding
modification structure can become very complex.

5. Conclusion
A working prototype of CyberBand was developed in
Smalltalk by one of the authors (Oppenheim) in 1996.
In January 1997 we begun work on a C++ version
that will be released to a wider audience.

The utility and effectiveness of this approach depends
on the user’s ability to have fine-grained control over
musical detail when needed. Without such control,
the program would be little more than a scrapbook for
music clips. The basic solution is twofold. First,
users can work at finer levels when desired, by
opening a block or decoration and modifying its
contents or behavior. Second, as noted earlier,
mechanisms are provided for creating hierarchies of
modifiers that can alter the way the music is rendered
(performed) in subtle or extreme ways.

Since much of the construction and refinement of the
final composition is done at a high level, without
having to deal with individual notes, several goals are
accomplished. Users with no formal education are
able to create music with a high degree of
compositional freedom. On the other hand,
accomplished computer musicians have a set of high
level tools that support fluid working sessions,
provide much improved control over the fine detail,
and let them easily accomplish tasks which are quite
difficult using standard user interfaces and
environments.

6. References
“FreeStyle” (1995). Software for Windows and

Macintosh, published by Mark of the Unicorn,
Cambridge, Massachusetts

“Symbolic Composer, 6th Generation Common Music
Language Reference” (1995). Software for the
Macintosh, published by Tonality Systems.

“Vision” (1996). Software for Windows and
Macintosh, published by Opcode Software
Systems, Menlo Park, California.

Ames, C. (1990). “Introduction to COMPOSE: An
editor and interpreter for automated score
generation and score processing,” Interface:
Journal of New Music Research, 20:3-4, p. 181.

Loy, G. (1989). “Composing with Computers—a
Survey,” in Current Directions in Computer
Music Research, Mathews M. and Pierce J.,
editors, MIT Press, Cambridge, Massachusetts.

Mathews, M. V. (1969). “The Technology of
Computer Music,” MIT Press, Cambridge, MA

Oppenheim, D. (1987). “The P-G-G Environment for
Music Composition.” Proceedings of the
International Computer Music Conference
(ICMC), Illinois.

Oppenheim, D. (1989). “DMIX: An Environment for
Composition.” Proceedings of the ICMC, Ohio.

Oppenheim, D. (1992). “Compositional Tools for
Adding Expression to Music.” Proceedings of
the ICMC, San Jose, California.

Oppenheim, D. (1993) “Slappability: A New
Metaphor for Human Computer Interaction.” in:
Music Education: An Artificial Intelligence
Perspective, Springer Verlag, London.

Oppenheim, D. (1995). “Demonstrating Mmorph: A
System for Morphing Music in Real-Time.”
Proceedings of the ICMC, Banff, Canada.

Oppenheim, D. (1996) “DMIX—A Multi Faceted
Environment for Composing and Performing
Computer.” Computers and Mathematics with
Applications, 32:1, pp. 117-135, 1996.

Oppenheim, D., Wright, J. (1996) “Towards a
Framework for Handling Musical Expression.”
Proceedings of the ICMC, Hong Kong.

Puckette, M. (1988). “The Patcher,” Proceedings of
the ICMC, Cologne.

Puckette, M. (1991). “Combining Event and Signal
Processing in the MAX Graphical Programming
Environment”, Computer Music Journal 15/3,
MIT Press, Cambridge, Massachusetts.

Schottstaedt, B. (1984). "PLA - A Tutorial and
Reference Manual," CCRMA report No. STAN-
M-24, Dept. of Music, Stanford University, CA.

Taube H. (1991) "Common Music: A Music
Composition Language in Common-Lisp and
Clos," CMJ 15/2. MIT Press, Cambridge, MA

Wright, Frazier and Steele, (1985), Sequencer Plus
music sequencer software for PC, published by
Voyetra Technologies, Yonkers, New York.

Wright, J., Rayna, D., (1991). Diskmix III V4 Mix
Automation software, published by Otari
Console Products Group, Hauppauge, NY.

Wright, J., Rayna, D., (1993). Concept I Automated
Audio Mixing Console software, ibid.

James L Wright
Reprinted from ICMC 1997 Copyright © 1997 IBM Corporation

